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Abstract. The inverse microscopic dielectric matrix of crystalline silicon is evaluated within
the time-dependent density-functional theory using one-electron energies and wave functions
obtained by all-electron modified augmented-plane-wave band-structure calculations. Local
fields are taken into account by inverting the dielectric matrix. The dependency of the exchange
and correlation on the frequency and momentum is described using different approximations.
We find that the polarization of the 2s and 2p core electrons changes the inverse dielectric
function by up to 8%. In the long-wavelength limit our results for the region below 5 eV
deviate from optical experiments by an almost constant energy shift, which is the same size as
the band-gap error in local density approximation. Our results correspond with inelastic x-ray
scattering spectroscopy measurements.

1. Introduction

In recent years the dielectric function (DEF) of silicon has been investigated extensively
both experimentally and theoretically. Besides inelastic scattering and reflection experiments
with electrons [1–4], the analysis of which is quite difficult [3, 5, 6], the dynamic structure
factor was measured by means of inelastic x-ray scattering spectroscopy (IXSS) by Schülke
and co-workers [7, 8]. For the first time non-diagonal elements of the inverse dielectric
matrix (DEM) were also measured [9–11].

The long-wavelength limit of the DEF (see references in [12]) and its dependence on
temperature [2, 13, 14] are obtained from optical experiments.

The first theoretical investigations of the DEF of silicon were based on rather simple
models [15, 16], on the empirical pseudopotential method (EPM) [17–20] or on the
empirical tight-binding (ETB) [21, 22] method. The recentab initio investigations
using pseudopotentials [23–30] or the orthogonalized-linear-combination-of-atomic-orbitals
(OLCAO) method [31] are mostly concerned with specific cases (ω = 0 andq = 0) [23–
25, 29] or with the long-wavelength limit [28, 30, 31] only. Exchange and correlation
are taken into account in the random-phase approximation (RPA) [31] or local density
approximation (LDA) [23–27] with gradient corrections (GC) [29] as well as self-energy
corrections (GW) [28]. Local fields as introduced by Adler [32] are considered in almost all
cited ab initio pseudopotential calculations but omitted in the OLCAO calculation. Only a
small proportion of the IXSS data have been compared with calculations in a two-plasmon-
band model [7, 33]. Still the following questions remain unsolved so far.

(i) How accurate is the dynamic structure factor obtained by the time-dependent density-
functional theory (TDDFT) [34, 35] using different frequency- and momentum-dependent
approximations of the exchange and correlation response kernelfxc KK ′(q, ω)?

(ii) How strong is the core polarization, which is ignored in pseudopotential calculations?

0953-8984/97/061225+16$19.50c© 1997 IOP Publishing Ltd 1225



1226 M Ehrnsperger and H Bross

(iii) How important are the local field corrections, which need a great amount of CPU
time?

2. Theory

The dielectric function is evaluated in the framework of the TDDFT, which leads to the
following expression for the microscopic longitudinal dielectric function [36–40]:

ε(q, ω) = 1 − vc(q, ω)χKS(q, ω)
[
1 − fxc(q, ω)χKS(q, ω)

]−1
. (1)

The indices of the matrices are the reciprocal-lattice vectors (K, K ′) andq is restricted
to the first Brillouin zone. The Fourier transform of all matrices in (1) is defined by

AKK ′(q, ω) = 1

Vc

∫
Vc

d3r

∫
d3r ′ exp[−i(q + K) · r]A(r, r′, ω) exp[i(q + K ′) · r′] (2)

where the integration with respect tor is taken over the Wigner–Seitz cell of volume
Vc and the integration overr′ extends over the volume of the crystal.vc

KK ′(q, ω) =
4πe2 δKK ′/‖q + K ′‖2 is the Coulomb potential, ande the electron charge. The response
function χKS of the non-interacting Kohn–Sham (KS) system is given by

χKS KK ′(q, ω) = 2

(2π)3

∫
d3k

∑
nn′

(fnk − fn′k+q)

× 〈nk| exp[−i(q + K) · r]|n′k + q〉〈n′k + q| exp[i(q + K ′) · r]|nk〉
Enk − En′k+q + h̄(ω + iη)

(3)

where the integration is taken over the first Brillouin zone.n andn′ are band indices,fnk is
the occupation factor for the Bloch state|nk〉 andη is a positive infinitesimal. The different
approximations of the exchange–correlation response kernelfxc used up to now are based
on the hypothesis that the functionalfxc[ρ] depends on the density atr, on an average
densityρ̄ and on the distance betweenr andr′ only:

fxc[ρ](r, r′, t − t ′) = fxc(ρ(r), ρ̄, |r − r′|, t − t ′). (4)

The right-hand side of (4) may be expressed by the Fourier transform

fxc(ρ(r), ρ̄, |r − r′|, t − t ′) = 1

(2π)3

∫
d3k exp[ik · (r − r′)] fxc(ρ(r), ρ̄, |k|, t − t ′).

(5)

Inserting (5) in (2) yields

fxc KK ′(q, ω) = 1

Vc

∫
Vc

d3r exp[−i(K − K ′) · r] fxc(ρ(r), ρ̄, |q + K ′|, ω). (6)

The following approximations forfxc(ρ(r), ρ̄, |k|, ω) have been discussed.

(a) fxc(ρ(r), ρ̄, |k|, ω) = 0 in the RPA.
(b) Singhal and Callaway [36], Zangwill and Soven [37] and Brosset al [38] used

fxc(ρ(r), ρ̄, |r − r′|, t − t ′) = δ(r − r′)δ(t − t ′)
∂2Exc

∂ρ2

∣∣∣∣
ρ(r)

(7)

which is local in space and instantaneous. In the sense of theXα-approximation Singhal
and Callaway used in the paper [36]

∂2Exc

∂ρ2

∣∣
ρ(r)

∼ ρ−2/3(r).
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(c) The expression used by Gross and Kohn [39]:

fxc(ρ(r), ρ̄, |r − r′|, ω) = δ(r − r′)f h
xc(ρ(r), k = 0, ω) (8)

is still local in space.
(d) Dabrowski [40] took non-local parts of the exchange and correlation potential into

account by assumingfxc(ρ(r), ρ̄, |k|, ω) = f h
xc(ρ(r), |k|, ω).

Here f h
xc is the exchange–correlation kernel of the homogeneous electron gas. It is

closely related to the functionG(ρ, |k|, ω):

f h
xc(ρ, |k|, ω) = −4πe2

k2
G(ρ, |k|, ω) (9)

which is known as local field correction of the homogeneous electron gas. In the present
paper we will not follow this nomenclature, to avoid confusion with the local field
corrections in the sense of Adler [32]. A parametrization ofG(ρ, |k|, ω) was given by
Dabrowski [40] coinciding with the limitω = 0 given by either Utsumi and Ichimaru
[41] or Vashishta and Singwi [42] and with the limitω = ∞ given by Pathak and
Vashishta [43]. Unless stated otherwise our calculations were performed with the proposal
(d) using Dabrowski’s [40] parametrization coinciding with the static limit of Utsumi and
Ichimaru [41].

The dynamic structure factorS(q, ω) is obtained via the fluctuation-dissipation theorem
[44]:

S(q + K, ω) = − (q + K)2

4π2e2n
Im ε−1

KK(q, ω) (10)

showing that only the diagonal element of the inverse microscopic dielectric matrix is of
interest. Heren is the density of the electrons.

3. Details of the numerical work

3.1. Band structure

The wave functions|nk〉 and the energiesεnk were obtained in the MAPW formalism
[45, 46] using a self-consistent potential evaluated by Bader [47]. This is a warped-muffin-
tin potential in which multipole moments within the muffin-tin spheres are neglected. In
order to avoid the difficulties caused by the incompleteness of the basis set described in
[38] a relatively large Ritzansatzwas used: 9(6)†, 9(6) and 8(5) different radial functions
Rsl(r) were chosen for the angular momental = 0, 1 and 2, respectively, requiring that the
logarithmic derivative(1/Rsl)(dRsl/dr) on the surface of the muffin-tin sphere be either
+1, 0, or−1. In this way radial functionsRsl covering the energy range up to 38(18) Ryd
are taken into account. The number of plane waves was restricted by the requirement

|k + K|2 6 27.5(2π/a)2 (11)

wherea is the lattice constant. Depending on the value of the wave vectork this results
in up to 169 plane waves and 285(221) different bands covering an energy range of up to
158(44) Ryd above the highest valence band. As we shall see in section 4.1 this set of
Bloch functions is almost complete in a numerical sense. For the evaluation of the potential
the smalleransatzis sufficient since only occupied bands are needed. The importance of
such a largeansatzhas also been shown by Engel and Farid [27].

† The numbers in parentheses describe theansatzused in Bader’s [47] calculation of the self-consistent potential.



1228 M Ehrnsperger and H Bross

Correlation effects are taken into account in the self-consistent procedure using the local
approximation of Hedin and Lundqvist [48] with the parameters given by Gunnarsson and
Lundqvist [49]. All calculations were carried out fora = 10.23 au.

3.2. The matrix elements

Explicit expressions for〈n′, k + q | exp[i(q + K) · r ]| nk〉 in the framework of the MAPW
formalism are given elsewhere [50–52]. As these expressions consist of finite sums only,
they can be evaluated with any desired accuracy. Without great effort it was possible to
achieve an accuracy of seven digits.

3.3. Integration over the Brillouin zone

The concept of magic points was used as described in an earlier investigation [53]. Due to
the partition of the Brillouin zone into small cubes the dielectric function shows some
noise which can be reduced by convolution with suitably chosen Gaussians. After a
convolution with 1.3 eV the maximum deviation between the functions calculated with
110 and 770 points in the irreducible wedge reaches 1.4%. 110 points are sufficient to
explain experiments with a resolution up to 1.3 eV. Compared to a previous investigation
of lithium [54] with the same scheme far fewer points are necessary since the bands do not
cross the Fermi energy. As optical measurements show significantly higher resolution, we
calculated the corresponding spectra using a mesh of 5740 points.

3.4. The rank of the dielectric matrix

The matrix operations according to (1) and (10) are performed with the set of 27 reciprocal-
lattice vectors corresponding up to the third-nearest-neighbouring shell. Test calculations
at q = (0.5 0 0)2π/a with 89 reciprocal-lattice vectors deviate by 2%. Engel and Farid
[27] obtained similar results atq = (1 0 0)2π/a, ω = 0, using up to 140 reciprocal-lattice
vectors.

In the long-wavelength limit local fields are found to be even more important [20]. As
many as 59 reciprocal-lattice vectors are needed to keep the deviations from the results
obtained with 89 vectors under 2%. This is in accord with the work of Baroni and Resta
[23] who considered up to 181 reciprocal-lattice vectors atω = 0. For each value ofq
the calculation of the dielectric matrix needed about one week of CPU time on an HP
9000/735 workstation, depending on the direction ofq. In order to keep the computation
time tolerable, the optical spectra are evaluated with 59 reciprocal-lattice vectors.

4. Results

4.1. Completeness of the Bloch functions

Accurate results for the dielectric function, especially for the real part, need an almost
complete set of Bloch functions in the sense that the sum

σnk(q) =
∑
n′

〈nk|exp(iq · r)|n′k′〉〈n′k′|exp(−iq · r)|nk〉 (12)

over all eigenstates obtained by solving the eigenvalue problem for a certaink differs only
slightly from 1, at least for the occupied Bloch states. Due to the orthonormality of the Bloch
states this requirement is identically fulfilled forq = 0. Using thek · p approximation one



Calculation of the dielectric matrix of Si 1229

finds that for small values of|q| the deviationσnk(q)−1 behaves like|q|2 or even increases
with a higher power ofq. The deviations 4× 10−5 and 4.5 × 10−4 for |q| = 0.5 × 2π/a

and |q| = 1.5 × 2π/a were found, respectively. An even largeransatzconsisting of 14,
14, 13 and 12 radial functionsRsl for the angular momenta 0, 1, 2 and 3, respectively, and
about 244 plane waves leading to more than 580 bands reduced the deviation by a factor
of 5. Equation (3) shows thatσnk(q) − 1 is an upper limit for the numerical error inχKS

caused by the incompleteness of the Ritzansatz. As the precision of our final results is
about 2% due to the error in the matrix inversion (see section 3.4), it is of no practical use
to improve the completeness by a using larger Ritzansatz.

Table 1. The f-sum rule. The ratios (right-hand side)/(left-hand side) of (13) or (14), resp-
ectively. The columns show different choices forfxc described in section 2: RPA, LDA and
fxc(d) belong to proposals (a), (b) and (d), respectively.

RPA(13) LDA(13) fxc(d)(13) RPA(14)

q = (0.5 0 0)2π/a 1.0139 1.0136 1.0139 1+ 4 × 10−4

q = (1.2 1.2 1.2)2π/a 0.9720 0.9745 0.9726 1+ 7 × 10−5

Figure 1. The imaginary part of the index of refractionk = Im
√

1/ε−1
00 . Solid line: theory;

dashed line: experiment [14, 12]; dotted line: the joint density of states in arbitrary units.

4.2. Sum rules

As an additional test for the completeness of theansatzas well as for the overall numerical
accuracy of our calculations, two sum rules are investigated: the f-sum rule [44]:

ω2
pl = −

∫ ∞

−∞
Im ε−1

KK(q, ω) ω
dω

π
(13)
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Figure 2. The real part of the index of refractionn = Re
√

1/ε−1
00 . Solid line: theory; dashed

line: experiment [14, 12].

whereω2
pl = 4πe2n/m is the plasma frequency of the valence electrons with average density

n, and the Kramers–Kronig transform at zero frequency:

ReεKK ′(q, ω = 0) = 1 +
∫ ∞

−∞

Im εKK ′(q, ω′)
ω′

dω′

π
. (14)

In order to test (14), ReεKK ′(q, ω = 0) is obtained with (1) and (3) directly. In the f-sum
rule, the imaginary part of the DEF at high energies ('100 Ryd) plays an important role
through the factorω in the numerator of the integral. In (14) the influence of these parts of
the DEF is reduced throughω′ in the denominator.

Table 1 shows that (14) is much better fulfilled in our calculation than (13). This
supports the assumption that the deviations in (13) are caused mainly by small inaccuracies
in the DEF at high energies.

Problems caused by non-local potentials as described in [30] do not appear in our work:
there are no non-local potentials as long as we calculate within the RPA or LDA limit.
Small non-local parts appear in the potential only if we use Dabrowski’s proposal [40] for
fxc (see section 2). These parts affect the sum rule by less then 0.1%, which is below our
numerical accuracy.

4.3. Core electron polarization

We calculated dielectric functions only up to 50 eV, which is smaller than the distance
between the conduction band and the 2p core electrons (90 eV). Omission of the 2s and
2p electrons in the sum (3) leads to no change in Imε and small changes in Reε of about
0.1%†. However, a change of 8% in Imε−1 is found near some peaks of Imε−1, since the
inverse dielectric function Imε−1 is very sensitive to small changes of Reε when both Imε

† The test calculation was performed atq = (0.5 0 0)2π/a; values are given in % of the maximum of the function.
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Figure 3. The band structure of silicon.

and Reε are small. Consequently the 2s and 2p electrons were taken into account in all
calculations of Imε−1. On the other hand, the 1s core electrons are frozen in all calculations
and omitted in the sum overn′ in (12). Nevertheless the completeness (see section 4.1) is
well satisfied.

Table 2. k-vector-resolved joint densities of states obtained with 110k-points within the
irreducible wedge forq = 0. First to third column: thek-point in units of 2π/a. Fourth
column: the contribution of thek-point to the joint density of states in %.

ω = 2.52 eV ω = 3.54 eV ω = 4.28 eV

k (2π/a) JDOS (%) k (2π/a) JDOS (%) k (2π/a) JDOS (%)

0.15 0.15 0.15 33.0 0.55 0.55 0.05 22.7 0.45 0.45 0.35 8.3
0.15 0.15 0.05 12.7 0.65 0.65 0.15 6.8 0.55 0.45 0.45 6.3
0.15 0.05 0.05 11.0 0.75 0.25 0.25 5.4 0.45 0.35 0.35 5.9
0.25 0.05 0.05 10.6 0.45 0.45 0.05 4.2 0.55 0.45 0.35 5.2
0.25 0.15 0.05 8.5 0.55 0.55 0.25 3.9 0.35 0.35 0.35 3.5
0.25 0.25 0.15 6.3 0.45 0.25 0.15 2.8 0.35 0.35 0.25 2.9
0.05 0.05 0.05 4.2 0.25 0.15 0.05 2.4 0.45 0.35 0.25 2.9
0.35 0.35 0.25 3.9 0.95 0.05 0.05 2.1 0.95 0.15 0.05 2.4
0.45 0.45 0.35 2.4 0.45 0.15 0.15 2.0 0.25 0.15 0.05 2.3
0.25 0.15 0.15 2.1 0.65 0.15 0.05 2.0 0.85 0.15 0.05 2.2
0.55 0.45 0.45 1.8 0.45 0.25 0.25 1.9 0.35 0.25 0.15 2.1
0.35 0.25 0.25 1.7 0.35 0.25 0.15 1.8 0.75 0.15 0.05 2.0
0.45 0.35 0.35 1.6 0.15 0.05 0.05 1.5 0.35 0.35 0.15 1.9

0.25 0.15 0.15 1.4 0.45 0.35 0.15 1.7
0.55 0.15 0.05 1.4 0.25 0.05 0.05 1.6
0.75 0.15 0.05 1.4 0.65 0.05 0.05 1.6
0.55 0.15 0.15 1.4 0.55 0.45 0.25 1.5
0.45 0.25 0.05 1.4 0.15 0.15 0.05 1.5
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Figure 4. The inverse dielectric function forq = 2.02×2π/a, q||[111], calculated with different
approximations forfxc. Solid line: the parametrization according to [40] and the static limit
given by [41]. Dashed line: the parametrization according to [40] and the static limit given
by [42]. Dotted line: the approximation proposed in [37]. Dashed–dotted line:−Im ε−1

RPA.
Dashed–double-dotted line: ImεRPA/((Im εRPA)

2 + (ReεRPA)
2). Triangles: the values cited by

Sturm, Scḧulke and Schmitz [7, 8]. The additional solid peak near 60 eV shows the resolution
of 1.5 eV, which was used for the convolution.

4.4. The long-wavelength limit

Except for those for the joint density of states (JDOS), the calculations were performed
with q = (0.025 0 0) × 2π/a, since the case whereq = 0 cannot be directly treated by use
of (1).

In figures 1 and 2 the theoretical and experimental spectra of the complex refraction
index are compared. The curves closely coincide for frequencies above 5 eV. At smaller
frequencies they are shifted against each other by the error in the band gap (0.92 eV). As
the energies of the first three peaks or stepsE1, E2 and E′

1 coincide in the JDOS and

k = Im
√

1/ε−1
00 , respectively, they can be assigned to transitions ink-space. Both the

k-vector-resolved JDOS listed in table 2 and the band structure shown in figure 3 support
this view.

The first peak at 2.52 eV arises primarily from the transition3v
3 → 3c

1 and partly
from the transition1v

5 → 1c
1 between almost parallel bands (see figure 3). The second at

3.54 eV is attributed to the transitions6v
2 → 6c

3 and to a smaller extent to the transitions
Xv

4 → Xc
1. The third at 4.28 eV is located along the3 direction (3v

3 → 3c
3).

The same critical points are found by other authors (e.g. Adachi [55]) using a band
structure obtained empirically by a fit to cyclotron resonance experiments and to optical
measurements [56]. From this agreement we conclude that, within the energies of these
critical points, the shape of the bands is reproduced correctly in the LDA: only the
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Figure 5. The dynamic structure factorS(q, ω) in the [100] direction. Dots: values cited by
Sturm, Scḧulke and Schmitz [7, 8]. Lines: calculated values convoluted with the experimental
resolution. Right-hand side:|q| in units of 2π/a.

conduction bands in the range between 0 and 5 eV above the valence bands must be
shifted to correct the LDA.

Table 3. Experimental and theoretical values ofεM(ω = 0) = Re(1/ε−1
00 (q = 0, ω = 0)).

Present LDA,fxc from reference [37] 14.7
Present,fxc from reference [41] 15.0
Present,fxc from reference [42] 14.7
Present RPA 14.0
LDA (reference [28]) 13.5
LDA (reference [29]) 12.7
RPA (reference [23]) 12.04
GC (reference [29]) 12.6
GW (reference [28]) 11.2
Experiment (0 K, reference [57]) 11.4

In table 3 the static value of the macroscopic dielectric constant obtained by different
calculations and its experimental value are listed. The value calculated withfxc from [37]
is fully consistent with the LDA band structure. The other proposals forfxc take some
non-local effects into account, but show only a small deviation from the LDA result. The
values ofεM obtained by several pseudopotential calculations based on the LDA [28, 29]
show better agreement with the experimental value, although our calculations use much
more realistic wave functions. This should, however, not be taken too seriously, since
the deviation between the pseudopotential LDA results [28] and [29], each of which was



1234 M Ehrnsperger and H Bross

Figure 6. The dynamic structure factorS(q, ω) in the [110] direction. Dots: values cited by
Sturm, Scḧulke and Schmitz [7, 8]. Lines: calculated values convoluted with the experimental
resolution. Right-hand side:|q| in units of 2π/a.

calculated with a similarly largeansatz, is as large as the disagreement between these
calculations and our result. We suspect that the deviations between the LDA results and
the experiment are caused by the inadequacy of the LDA, which does not reproduce the
band gap. This conclusion is supported by the fact that the result obtained within the GW
approximation [28] agrees quite well with the experimental result.

4.5. The static dielectric matrix

In table 4 some relevant elements of the static dielectric matrixε̃KK ′(q) = (|q + K|/|q +
K ′|)εKK ′(q) up to the fifth shell are shown. The other elements can be calculated by means
of the symmetry relations:

ε̃KK ′(q) = ε̃K ′K(q) (15)

ε̃αKαK ′(αq) = exp[iα(K − K ′)τα] ε̃KK ′(q) (16)

lim
q→0,q||q1

ε̃0K ′(q) = lim
q→0,q||q1

−ε̃0K ′(−q) (K ′ 6= 0) (17)

or must vanish due to these relations. limq→0 ε̃(q) depends on the direction ofq if one of
the pairs(KK ′) vanishes. The matrixα with the non primitive translationτα describes a
symmetry operation under which the crystal is invariant.

The calculations were performed withq = (0.025 0 0) × 2π/a. In table 4 the mean
values of the matrix elements, which must be equal due to the symmetry requirements
(15)–(17), are shown. The maximum deviation of 10% between that mean value and the
calculated values for the non-diagonal elements and 1% for the diagonal elements of the
matrix shows the quality of the approximationq ' 0.
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Figure 7. The dynamic structure factorS(q, ω) in the [111] direction. Dots: values cited by
Sturm, Scḧulke and Schmitz [7, 8]. Lines: calculated values convoluted with the experimental
resolution. Right-hand side:|q| in units of 2π/a.

From table 4 we learn that the diagonal elements of the dielectric matrix are much larger
than the non-diagonal elements. Let us now considerε̃ = ε̃Diag + ε̃NDiag, ε̃Diag containing
the diagonal elements ofε̃ only. Then

ε̃−1
KK ′ ' (ε̃Diag)

−1
KKδKK ′ − (ε̃Diag)

−1
KK ε̃NDiagKK ′ (ε̃Diag)

−1
K ′K ′ (18)

holds approximately. This approximation gives a value of 15.5 for 1/ε̃−1
00 , where the

corresponding value obtained by inverting the matrix is 14.0. At first glance, the difference
of 10% is surprising since the largest non-diagonal element ofε̃ is only 3% of ε̃00. A more
sophisticated analysis, however, makes it clear that this difference is a consequence of the
large number of the non-diagonal elements of the 59× 59 matrix.

Using (18), known properties ofε can be transferred toε−1. In insulators and semi-
conductors like silicon, limq→0 ε0K ′(q) ∼ 1/|q| holds for K ′ 6= 0. From (18) it follows
that

lim
q→0

ε−1
0K ′(q) = lim

q→0

|q + K ′|
|q| ε̃−1

0K ′(q)

' lim
q→0

−|q + K ′|
|q|

ε̃0K ′(q)

ε̃00(q)ε̃K ′K ′(q)
∼ 1

|q| K ′ 6= 0. (19)

Seidl et al [58] pointed out that the non-diagonal elements of the static DEF are
important for incorporating screened exchange in KS schemes.
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Table 4. Elements of the matrix̃εRPA
KK ′ (q) = (|q + K|/|q + K ′|)εRPA

KK ′ (q) in the limit
q → 0, q||100. First column:K; first row: K ′; second row:ε̃RPA

KK ′ (q).

000 111 220 022 311 131 222

000 15.4646 −0.4665 0.1351 0.0015 0.1469 0.1085 0.1767

111 11̄1 11̄1̄ 1̄1̄1̄ 200 00̄2 220 20̄2 02̄2̄ 311

111 1.7946 0.0195−0.0167 −0.1917 0.1390 −0.0409 0.0915 0.0069−0.0260 −0.0034

311̄ 31̄1̄ 11̄3 11̄3̄ 1̄1̄3̄ 222 22̄2 22̄2̄ 2̄2̄2̄

111 −0.0099 0.0003 0.0126 0.0018−0.0066 −0.0818 −0.0254 0.0106 0.0070

200 020 2̄00 022 311 131 1̄31 3̄11 222 2̄22

200 1.6096 0.0087−0.0043 −0.0123 −0.0719 0.0142 −0.0135 0.0052 0.0082−0.0063

220 202 2̄20 0̄22 2̄2̄0 311 3̄11 113 1̄13 1̄31

220 1.2462 −0.0121 0.0152 0.0047−0.0225 0.0496 −0.0146 −0.0141 −0.0103 0.0009

1̄1̄3 1̄3̄1 222 2̄22 2̄2̄2

220 0.0004 −0.0055 0.0050 −0.0025 −0.0025

311 31̄1 31̄1̄ 131 13̄1 11̄3 11̄3̄ 1̄31 1̄31̄ 1̄13̄

311 1.1287 0.0011 0.0044 0.0005 0.0082 0.0013−0.0073 −0.0013 0.0073 −0.0047

1̄1̄3̄ 3̄11 3̄11̄ 3̄1̄1̄ 222 22̄2 22̄2̄ 2̄22 2̄22̄ 2̄2̄2̄

311 −0.0016 −0.0024 0.0001 −0.0041 0.0337 0.0094−0.0069 0.0027 −0.0015 −0.0044

222 22̄2 22̄2̄ 2̄2̄2̄

222 1.1075 0.0125−0.0027 −0.0062

4.6. Comparison of several approximations forfxc

Figure 4 shows the inverse dielectric function obtained from IXSS experiments [7, 8] and
theoretical results derived with different approximations forfxc.

Compared toεRPA all approximations of the functionalfxc improve the result at energies
below 30 eV. The best agreement with the experiment is obtained with the static limit
given in [41]. It agrees with the experiment at energies below 20 eV and between 35
and 70 eV. Compared to the much simpler local approximation [37] it reproduces the
experiment somewhat better below 18 eV and slightly worse between 20 and 30 eV.
Excitonic excitations at energies below 2 eV are not seen in the theory. Local fields
show the largest effect ('30%) at 15 eV. A similar result was found by Sturmet al [7]
using a pseudopotential scheme. We conclude that the results of Josefsson and Smith [20],
according to which local fields at higher|q| ' 2π/a are negligible in the [100] direction,
cannot be generalized for the [111] direction.

4.7. Comparison with IXSS experiments

The dynamic structure factor of silicon along the principal directions has been examined
extensively by Scḧulke and co-workers [7, 8] in a series of IXSS experiments. In figures
5–7 these measurements are compared with our results obtained for the same values of
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transferred momentum. In order to correct for possible inaccuracies in the absolute scale of
the experimental curves†, we divided them by the free parameterλ ranging from 1 to 1.3.
No other free parameters were fitted.λ was used in figures 5–7 only.

The theoretical structure is quite close to the experimental results, even for higher
transferred momenta and energies. This shows that, apart from the deviations near the band
gap (see section 4.4), the band structure is reproduced correctly by the LDA, and that the
ansatzis large enough for calculating even higher bands. The oscillations appearing in the
theoretical spectra for|q| > 2 × 2π/a and h̄ω > 30 eV are certainly not realistic. They
do not disappear even when a largeransatzis used in test calculations. We found similar
oscillations in the case of lithium [54]. Since other numerical inadequacies can almost be
excluded (see section 3), we suspect that small artefacts of the band structure at higher
energies might be the origin.

Figure 8. Peaks of the dynamic structure factor measured by various groups together with the
values calculated in this work. [100] direction: dashed line: this work. Squares: reference
[7, 8]. Primed squares and squares with error bars: reference [3]. [110] direction: solid line:
this work. Circles: references [7, 8]. Primed circles: reference [3]. [111] direction: dotted line:
this work. Triangles: references [7, 8]. Triangles with error bars: Reference [1].

In figure 8 the positions of all peaks observed by various groups [7, 8, 3, 1] are
given in anω–q plot together with the dispersion obtained from our theoretical results
after a suitable convolution. Unrealistic oscillations above 30 eV were ignored for this
purpose. Atq = 2.04 × 2π/a in the [100] direction the theoretical curve in figure 5
shows two peaks of nearly the same height. In figure 8 the mean value of the two peak
positions is plotted. The theoretical results coincide with the experimental values within
the experimental accuracy. The latter is given by energy error bars, by theq-resolution

† Uncertainties infxc may be a reason as well.
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estimated to be up to 10% [7], and by deviations between different groups.
For q below 1× 2π/a there is nearly no anisotropy and the dispersion is approximately

quadratic. In the [110] direction the dispersion is negative between 1.7 and 1.8 × 2π/a, in
agreement with the IXSS experiments [7, 8].

Figure 9. −Im ε−1
0K (q) for q = (0.9 0.3 0.3) × 2π/a and K = (1 1 1) × 2π/a. Solid

line: −Im ε−1
UI . Dashed line:−Im ε−1

VS . Dotted line: −Im ε−1
local. Dashed-dotted line:−Im ε−1

RPA.
Triangles with error bars: values measured by Schülke and Kaprolat [9, 11]. The additional
solid peak near 37 eV shows the resolution of 3 eV, which was used for convolution.

4.8. A non-diagonal element of the dielectric matrix

In figure 9 a non-diagonal element of the dielectric matrix is shown together with the
experimental results [9, 11]. The peak near 22 eV coincides well, while at other energies
the deviations are larger than the experimental error. The theoretical result depends only
slightly on the chosen approximation forfxc.

5. Conclusion

The dynamic structure factor is reproduced in the TDDFT within the experimental accuracy.
The result depends only slightly on different approximations forfxc. Polarization of the
2s and 2p core electrons changes the inverse dielectric matrix by up to 8%. In certain
frequency regions andq-directions the change ofε−1 caused by local field effects amounts
to up to 30%.
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