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Abstract. The inverse microscopic dielectric matrix of crystalline silicon is evaluated within
the time-dependent density-functional theory using one-electron energies and wave functions
obtained by all-electron modified augmented-plane-wave band-structure calculations. Local
fields are taken into account by inverting the dielectric matrix. The dependency of the exchange
and correlation on the frequency and momentum is described using different approximations.
We find that the polarization of the 2s and 2p core electrons changes the inverse dielectric
function by up to 8%. In the long-wavelength limit our results for the region below 5 eV
deviate from optical experiments by an almost constant energy shift, which is the same size as
the band-gap error in local density approximation. Our results correspond with inelastic x-ray
scattering spectroscopy measurements.

1. Introduction

In recent years the dielectric function (DEF) of silicon has been investigated extensively
both experimentally and theoretically. Besides inelastic scattering and reflection experiments
with electrons [1-4], the analysis of which is quite difficult [3, 5, 6], the dynamic structure
factor was measured by means of inelastic x-ray scattering spectroscopy (IXSS)utkeSch
and co-workers [7, 8]. For the first time non-diagonal elements of the inverse dielectric
matrix (DEM) were also measured [9-11].

The long-wavelength limit of the DEF (see references in [12]) and its dependence on
temperature [2, 13, 14] are obtained from optical experiments.

The first theoretical investigations of the DEF of silicon were based on rather simple
models [15, 16], on the empirical pseudopotential method (EPM) [17-20] or on the
empirical tight-binding (ETB) [21, 22] method. The receab initio investigations
using pseudopotentials [23—30] or the orthogonalized-linear-combination-of-atomic-orbitals
(OLCAO) method [31] are mostly concerned with specific cages=(0 andg = 0) [23—

25, 29] or with the long-wavelength limit [28, 30, 31] only. Exchange and correlation
are taken into account in the random-phase approximation (RPA) [31] or local density
approximation (LDA) [23-27] with gradient corrections (GC) [29] as well as self-energy
corrections (GW) [28]. Local fields as introduced by Adler [32] are considered in almost all
cited ab initio pseudopotential calculations but omitted in the OLCAO calculation. Only a
small proportion of the IXSS data have been compared with calculations in a two-plasmon-
band model [7, 33]. Still the following questions remain unsolved so far.

(i) How accurate is the dynamic structure factor obtained by the time-dependent density-
functional theory (TDDFT) [34, 35] using different frequency- and momentum-dependent
approximations of the exchange and correlation response kgl (g, w)?

(i) How strong is the core polarization, which is ignored in pseudopotential calculations?
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1226 M Ehrnsperger and H Bross

(iif) How important are the local field corrections, which need a great amount of CPU
time?

2. Theory

The dielectric function is evaluated in the framework of the TDDFT, which leads to the
following expression for the microscopic longitudinal dielectric function [36—40]:
-1
€(q, ) = 1—V°(q, 0)Xys(q, ®) [1 = fxe(q, @) xs(q. 0)] . (1)
The indices of the matrices are the reciprocal-lattice vecti&rsK’) andgq is restricted
to the first Brillouin zone. The Fourier transform of all matrices in (1) is defined by

1 . ,
Ax(a.o) = [ & [ & epbia+ K)o epla+ K] @
cJV;

where the integration with respect to is taken over the Wigner—Seitz cell of volume
Ve and the integration over’ extends over the volume of the crystaby, .. (q, w) =
4re? Sk /llg + K'||? is the Coulomb potential, ane the electron charge. The response
function xs of the non-interacting Kohn—Sham (KS) system is given by

2
oo K16 (@) = (s f ok %}fnk ~ fukrq)

" (nk|expl—i(g+ K) - r]|ln'k + q)(n'k + g| expli(g + K') - r]|nk) 3)
Enk - En’k:Jrq + E(C{) + ”7)
where the integration is taken over the first Brillouin zoneandr’ are band indicesf,, is
the occupation factor for the Bloch stdige) andy is a positive infinitesimal. The different
approximations of the exchange—correlation response keggpelsed up to now are based
on the hypothesis that the functiongl.[p] depends on the density &t on an average
density o and on the distance betweerandr’ only:

fXC[p](Tv 71/9 t— t/) = fXC(p(T)v 157 |lr. - TJ': r— t/) (4)
The right-hand side of (4) may be expressed by the Fourier transform
/dgk eXp['k : (T - r,)] fXC(Io(T)’ 1(3’ |k|’ r— t/)'
)

belp@. polr =l 1 =) = 5 5

Inserting (5) in (2) yields
o (@.0) = | P~ ) 1] fo(). 7. la + KL o) ©)
The following approximations foix.(o(r), p, |k|, @) have been discussed.
(@) frc(p(r), p, |k|, w) = 0 in the RPA.
(b) Singhal and Callaway [36], Zangwill and Soven [37] and Bresal [38] used
02 Exc @
T P
which is local in space and instantaneous. In the sense oXthapproximation Singhal
and Callaway used in the paper [36]
32E,,
9p2

frelo(r), p,lr —7'|,t =) = 8(r —r)8(t — 1)

~ p~2B3(r).

p(r)
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(c) The expression used by Gross and Kohn [39]:

fXC(IO(T)v 157 |r - T/|, w) = S(T - r/)fX'::(,O('I"), k = 09 Cl)) (8)

is still local in space.
(d) Dabrowski [40] took non-local parts of the exchange and correlation potential into
account by assumingy.(o(7), o, |k|, w) = thc(p(r), k|, w).

Here £ is the exchange—correlation kernel of the homogeneous electron gas. It is
closely related to the functioG (p, |k|, w):

47 e?
Fre(o, Ikl @) = ==

which is known as local field correction of the homogeneous electron gas. In the present
paper we will not follow this nomenclature, to avoid confusion with the local field
corrections in the sense of Adler [32]. A parametrizationG(p, |k|, ) was given by
Dabrowski [40] coinciding with the limitw = O given by either Utsumi and Ichimaru
[41] or Vashishta and Singwi [42] and with the limié = oo given by Pathak and
Vashishta [43]. Unless stated otherwise our calculations were performed with the proposal
(d) using Dabrowski's [40] parametrization coinciding with the static limit of Utsumi and
Ichimaru [41].

The dynamic structure factdi(q, w) is obtained via the fluctuation-dissipation theorem
[44]:

G(p, |k, ®) ©)

(q+ K)? _
showing that only the diagonal element of the inverse microscopic dielectric matrix is of
interest. Here: is the density of the electrons.

3. Details of the numerical work

3.1. Band structure

The wave functiongnk) and the energies,, were obtained in the MAPW formalism

[45, 46] using a self-consistent potential evaluated by Bader [47]. This is a warped-muffin-
tin potential in which multipole moments within the muffin-tin spheres are neglected. In
order to avoid the difficulties caused by the incompleteness of the basis set described in
[38] a relatively large Ritansatzwas used: 9(6) 9(6) and 8(5) different radial functions

Ry, (r) were chosen for the angular momehta 0, 1 and 2, respectively, requiring that the
logarithmic derivative(1/Ry;)(dRy;/dr) on the surface of the muffin-tin sphere be either
+1, 0, or—1. In this way radial function®,; covering the energy range up to 38(18) Ryd

are taken into account. The number of plane waves was restricted by the requirement

|k + K|? < 27.5(21 /a)? (11)

wherea is the lattice constant. Depending on the value of the wave véctbis results

in up to 169 plane waves and 285(221) different bands covering an energy range of up to
158(44) Ryd above the highest valence band. As we shall see in section 4.1 this set of
Bloch functions is almost complete in a numerical sense. For the evaluation of the potential
the smalleransatzis sufficient since only occupied bands are needed. The importance of
such a largeansatzhas also been shown by Engel and Farid [27].

T The numbers in parentheses describeahgatzused in Bader’s [47] calculation of the self-consistent potential.
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Correlation effects are taken into account in the self-consistent procedure using the local
approximation of Hedin and Lundqvist [48] with the parameters given by Gunnarsson and
Lundgqvist [49]. All calculations were carried out far= 10.23 au.

3.2. The matrix elements

Explicit expressions fotn’, k + q | expli(q + K) - r]| nk) in the framework of the MAPW
formalism are given elsewhere [50-52]. As these expressions consist of finite sums only,
they can be evaluated with any desired accuracy. Without great effort it was possible to
achieve an accuracy of seven digits.

3.3. Integration over the Brillouin zone

The concept of magic points was used as described in an earlier investigation [53]. Due to
the partition of the Brillouin zone into small cubes the dielectric function shows some
noise which can be reduced by convolution with suitably chosen Gaussians. After a
convolution with 1.3 eV the maximum deviation between the functions calculated with
110 and 770 points in the irreducible wedge reaches 1.4%. 110 points are sufficient to
explain experiments with a resolution up to 1.3 eV. Compared to a previous investigation
of lithium [54] with the same scheme far fewer points are necessary since the bands do not
cross the Fermi energy. As optical measurements show significantly higher resolution, we
calculated the corresponding spectra using a mesh of 5740 points.

3.4. The rank of the dielectric matrix

The matrix operations according to (1) and (10) are performed with the set of 27 reciprocal-
lattice vectors corresponding up to the third-nearest-neighbouring shell. Test calculations
at g = (0.5 0 027 /a with 89 reciprocal-lattice vectors deviate by 2%. Engel and Farid
[27] obtained similar results af = (1 0 027 /a, w = 0, using up to 140 reciprocal-lattice
vectors.

In the long-wavelength limit local fields are found to be even more important [20]. As
many as 59 reciprocal-lattice vectors are needed to keep the deviations from the results
obtained with 89 vectors under 2%. This is in accord with the work of Baroni and Resta
[23] who considered up to 181 reciprocal-lattice vectorswat 0. For each value of
the calculation of the dielectric matrix needed about one week of CPU time on an HP
9000/735 workstation, depending on the directiongofin order to keep the computation
time tolerable, the optical spectra are evaluated with 59 reciprocal-lattice vectors.

4. Results

4.1. Completeness of the Bloch functions

Accurate results for the dielectric function, especially for the real part, need an almost
complete set of Bloch functions in the sense that the sum
onk(q) = Z(nkleXp(iq ) |[n'K) (n'K'|lexp(—iq - 7)|nk) (12)

n

over all eigenstates obtained by solving the eigenvalue problem for a ckrtiffers only
slightly from 1, at least for the occupied Bloch states. Due to the orthonormality of the Bloch
states this requirement is identically fulfilled fgr= 0. Using thek - p approximation one
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finds that for small values df;| the deviations,;.(q) — 1 behaves likeg|? or even increases

with a higher power ofy. The deviations 4« 10~° and 45 x 10~ for |g| = 0.5 x 27/a

and |q| = 1.5 x 27 /a were found, respectively. An even largansatzconsisting of 14,

14, 13 and 12 radial functiongy; for the angular momenta 0, 1, 2 and 3, respectively, and
about 244 plane waves leading to more than 580 bands reduced the deviation by a factor
of 5. Equation (3) shows that,;(q) — 1 is an upper limit for the numerical error ixs

caused by the incompleteness of the Ritisatz As the precision of our final results is
about 2% due to the error in the matrix inversion (see section 3.4), it is of no practical use

to improve the completeness by a using larger Ritsatz

Table 1. The f-sum rule. The ratios (right-hand side)/(left-hand side) of (13) or (14), resp-
ectively. The columns show different choices ffic described in section 2: RPA, LDA and
fxc(d) belong to proposals (a), (b) and (d), respectively.

RPA(13) LDA(13) fxc(d)(13) RPA(14)

q=1(05002r/a 1.0139 1.0136 1.0139 14x10*
qg=(121212)2x/a 0.9720 0.9745 0.9726 +7x10°°

k E,
6 - ~
4_ i
B, )
2| /i
0 }
0

w leV]

Figure 1. The imaginary part of the index of refractidn= |m1/1/6601. Solid line: theory;
dashed line: experiment [14, 12]; dotted line: the joint density of states in arbitrary units.

4.2. Sum rules

As an additional test for the completeness of dmsatzas well as for the overall numerical
accuracy of our calculations, two sum rules are investigated: the f-sum rule [44]:

o dow
Wl = —/ Im e (q, w) @ — (13)

o]



1230 M Ehrnsperger and H Bross

n

w leV]

Figure 2. The real part of the index of refraction= Re 1/60_01. Solid line: theory; dashed
line: experiment [14, 12].

wherewgI = 4 e®n/m is the plasma frequency of the valence electrons with average density
n, and the Kramers—Kronig transform at zero frequency:

o0 / /
ReeKKr(q,a):O)zl—i—/ w dﬁ (14)
0 w T
In order to test (14), Rex k' (q, = 0) is obtained with (1) and (3) directly. In the f-sum
rule, the imaginary part of the DEF at high energieslQ0 Ryd) plays an important role
through the factow in the numerator of the integral. In (14) the influence of these parts of
the DEF is reduced through’ in the denominator.

Table 1 shows that (14) is much better fulfilled in our calculation than (13). This
supports the assumption that the deviations in (13) are caused mainly by small inaccuracies
in the DEF at high energies.

Problems caused by non-local potentials as described in [30] do not appear in our work:
there are no non-local potentials as long as we calculate within the RPA or LDA limit.
Small non-local parts appear in the potential only if we use Dabrowski's proposal [40] for

fxc (see section 2). These parts affect the sum rule by less then 0.1%, which is below our
numerical accuracy.

4.3. Core electron polarization

We calculated dielectric functions only up to 50 eV, which is smaller than the distance
between the conduction band and the 2p core electrons (90 eV). Omission of the 2s and
2p electrons in the sum (3) leads to no change ir lamd small changes in Reof about

0.1%f. However, a change of 8% in lat? is found near some peaks of kn!, since the
inverse dielectric function Ira~! is very sensitive to small changes of Reshen both Ime

1 The test calculation was performedgat= (0.5 0 02 /a; values are given in % of the maximum of the function.
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Figure 3. The band structure of silicon.

and Re are small. Consequently the 2s and 2p electrons were taken into account in all
calculations of Ine 1. On the other hand, the 1s core electrons are frozen in all calculations
and omitted in the sum over in (12). Nevertheless the completeness (see section 4.1) is
well satisfied.

Table 2. k-vector-resolved joint densities of states obtained with EtPoints within the
irreducible wedge forg = 0. First to third column: thek-point in units of 2r/a. Fourth
column: the contribution of th&-point to the joint density of states in %.

=252 eV =354 eV w=4.28 eV
k (2n/a) JDOS (%) k (2n/a) JDOS (%) k (2n/a) JDOS (%)
015 015 0.15 33.0 055 055 005 227 0.45 045 035 83
015 015 005 127 0.65 065 015 638 055 045 045 6.3
015 005 005 11.0 075 025 025 5.4 045 035 035 59
025 005 005 10.6 045 045 005 42 055 045 035 5.2
025 015 005 85 055 055 025 3.9 035 035 035 35
025 025 015 6.3 045 025 015 28 035 035 025 2.9
005 005 005 42 025 015 005 2.4 045 035 025 29
035 035 025 3.9 095 0.05 005 21 095 015 0.05 24
045 045 035 24 0.45 015 015 2.0 025 015 005 23
025 015 015 2.1 065 015 005 2.0 0.85 015 005 22
055 045 045 18 045 025 025 1.9 035 025 015 21
035 025 025 17 035 025 015 1.8 075 0.15 005 20
045 035 035 16 015 005 005 15 035 035 015 1.9
025 015 015 1.4 045 035 015 1.7
055 015 005 1.4 025 005 005 16
075 015 005 14 065 005 005 16
055 015 015 1.4 055 045 025 15

0.45 0.25 0.05 14 0.15 0.15 0.05 15
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Figure 4. The inverse dielectric function for = 2.02x 2 /a, q||[111], calculated with different
approximations forfxc. Solid line: the parametrization according to [40] and the static limit
given by [41]. Dashed line: the parametrization according to [40] and the static limit given
by [42]. Dotted line: the approximation proposed in [37]. Dashed—dotted linbn egplA.
Dashed—double-dotted line: krea/((IM erpa)? + (Reerpa)?). Triangles: the values cited by
Sturm, Schilke and Schmitz [7, 8]. The additional solid peak near 60 eV shows the resolution
of 1.5 eV, which was used for the convolution.

4.4. The long-wavelength limit

Except for those for the joint density of states (JDOS), the calculations were performed
with ¢ = (0.025 0 Q x 27 /a, since the case whetg= 0 cannot be directly treated by use
of (1).

In figures 1 and 2 the theoretical and experimental spectra of the complex refraction
index are compared. The curves closely coincide for frequencies above 5 eV. At smaller
frequencies they are shifted against each other by the error in the band gap (0.92 eV). As
the energies of the first three peaks or stéps E» and E; coincide in the JDOS and

k = Im,/l/eo‘ol, respectively, they can be assigned to transition&-space. Both the
k-vector-resolved JDOS listed in table 2 and the band structure shown in figure 3 support
this view.

The first peak at 2.52 eV arises primarily from the transitibh — A{ and partly
from the transitionA? — A{ between almost parallel bands (see figure 3). The second at
3.54 eV is attributed to the transitions; — X5 and to a smaller extent to the transitions
X3 — X{. The third at 4.28 eV is located along thiedirection (A} — A).

The same critical points are found by other authors (e.g. Adachi [55]) using a band
structure obtained empirically by a fit to cyclotron resonance experiments and to optical
measurements [56]. From this agreement we conclude that, within the energies of these
critical points, the shape of the bands is reproduced correctly in the LDA: only the
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Figure 5. The dynamic structure facta¥(q, w) in the [100] direction. Dots: values cited by
Sturm, Schilke and Schmitz [7, 8]. Lines: calculated values convoluted with the experimental
resolution. Right-hand siddg| in units of 27 /a.

conduction bands in the range between 0 and 5 eV above the valence bands must be
shifted to correct the LDA.

Table 3. Experimental and theoretical values gf(w = 0) = Re(l/eo‘ol(q =0,0 =0)).

Present LDA, fxc from reference [37] 14.7

Present,fxc from reference [41] 15.0
Present,fxc from reference [42] 14.7
Present RPA 14.0
LDA (reference [28]) 135
LDA (reference [29]) 12.7
RPA (reference [23]) 12.04
GC (reference [29]) 12.6
GW (reference [28]) 11.2
Experiment (0 K, reference [57]) 114

In table 3 the static value of the macroscopic dielectric constant obtained by different
calculations and its experimental value are listed. The value calculatedfwithom [37]
is fully consistent with the LDA band structure. The other proposalsffgrtake some
non-local effects into account, but show only a small deviation from the LDA result. The
values ofe, obtained by several pseudopotential calculations based on the LDA [28, 29]
show better agreement with the experimental value, although our calculations use much
more realistic wave functions. This should, however, not be taken too seriously, since
the deviation between the pseudopotential LDA results [28] and [29], each of which was
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Figure 6. The dynamic structure facta¥(q, w) in the [110] direction. Dots: values cited by
Sturm, Schilke and Schmitz [7, 8]. Lines: calculated values convoluted with the experimental
resolution. Right-hand siddg| in units of 27 /a.

calculated with a similarly largansatz is as large as the disagreement between these
calculations and our result. We suspect that the deviations between the LDA results and
the experiment are caused by the inadequacy of the LDA, which does not reproduce the
band gap. This conclusion is supported by the fact that the result obtained within the GW
approximation [28] agrees quite well with the experimental result.

4.5. The static dielectric matrix

In table 4 some relevant elements of the static dielectric magix (q) = (Il + K|/|q +
K'))exk (q) up to the fifth shell are shown. The other elements can be calculated by means
of the symmetry relations:

€xk (q) = €xk(qQ) (15)
€akar (aq) = explia(K — K T4] éxk (q) (16)

lim  éx (@ = lim —ég(—q) (K'#0) 17)
q—0.qllg1 q—0.qllq1

or must vanish due to these relations. Jimg €(g) depends on the direction af if one of
the pairs(K K’) vanishes. The matrixe with the non primitive translation, describes a
symmetry operation under which the crystal is invariant.

The calculations were performed with= (0.025 0 Q x 2z /a. In table 4 the mean
values of the matrix elements, which must be equal due to the symmetry requirements
(15)-(17), are shown. The maximum deviation of 10% between that mean value and the
calculated values for the non-diagonal elements and 1% for the diagonal elements of the
matrix shows the quality of the approximatign~ 0.
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Figure 7. The dynamic structure facta¥(q, w) in the [111] direction. Dots: values cited by
Sturm, Schilke and Schmitz [7, 8]. Lines: calculated values convoluted with the experimental
resolution. Right-hand siddg| in units of 27 /a.

From table 4 we learn that the diagonal elements of the dielectric matrix are much larger
than the non-diagonal elements. Let us now conséder €pjag + Enpiag: €piag CONtaINing
the diagonal elements @fonly. Then

I - -1 = ~ -1
€ = (€Diag)KK5KK/ - (EDiag)KK €NDiag K K’ (€Diag)K/Kf (18)

holds approximately. This approximation gives a value of 15.5 fpi(;o’], where the
corresponding value obtained by inverting the matrix is 14.0. At first glance, the difference
of 10% is surprising since the largest non-diagonal elemeatigfonly 3% oféq. A more
sophisticated analysis, however, makes it clear that this difference is a consequence of the
large number of the non-diagonal elements of thex389 matrix.

Using (18), known properties af can be transferred te~. In insulators and semi-
conductors like silicon, lig.oeox(g) ~ 1/Ig| holds for K’ # 0. From (18) it follows
that

L g+ K'| .4
lim e, (q) = lim & &L,
a0 €K (@) il lql ok (@)
. K’ €0k
~ lim — |q + | , GOIf (q) o~ K ;é 0. (19)
q—0 lgl €on(@exr(q) Iq|

Seidl et al [58] pointed out that the non-diagonal elements of the static DEF are
important for incorporating screened exchange in KS schemes.
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Table 4. Elements of the matrieR™,(q) = (Iq + K|/lq + K'DeR%. (¢) in the limit
q — 0, ¢||100. First column:K; first row: K'; second row:R2, (q).

000 111 220 022 311 131 222

000 15.4646 —0.4665 0.1351 0.0015 0.1469 0.1085 0.1767

111 11 11 111 200 0 220 20 022 311

111 1.7946 0.0195-0.0167 —0.1917 0.1390-0.0409 0.0915 0.0069-0.0260 —0.0034

311 311 113 13 113 222 22 22 222

111 —0.0099 0.0003 0.0126 0.0018-0.0066 —0.0818 —0.0254 0.0106 0.0070

200 020 200 022 311 131 131 311 222 222

200 1.6096 0.0087—-0.0043 —0.0123 —0.0719 0.0142-0.0135 0.0052 0.0082—-0.0063

220 202 20 ®2 220 311 31 113 13 131

220 1.2462 —-0.0121 0.0152 0.0047-0.0225 0.0496-0.0146 —0.0141 —0.0103  0.0009

113 131 222 22 222

220 0.0004 —0.0055 0.0050-0.0025 —0.0025

311 31 311 131 13 113 113 131 131 113

311 1.1287 0.0011 0.0044 0.0005 0.0082 0.00+8.0073 —0.0013 0.0073—-0.0047

113 311 311 311 222 22 22 222 22 222

311 -0.0016 -0.0024 0.0001-0.0041 0.0337 0.0094-0.0069 0.0027 —0.0015 —0.0044

222 22 22 222

222 1.1075 0.0125-0.0027 —0.0062

4.6. Comparison of several approximations fk

Figure 4 shows the inverse dielectric function obtained from IXSS experiments [7, 8] and
theoretical results derived with different approximations faQy.

Compared taq, all approximations of the functiongh. improve the result at energies
below 30 eV. The best agreement with the experiment is obtained with the static limit
given in [41]. It agrees with the experiment at energies below 20 eV and between 35
and 70 eV. Compared to the much simpler local approximation [37] it reproduces the
experiment somewhat better below 18 eV and slightly worse between 20 and 30 eV.
Excitonic excitations at energies below 2 eV are not seen in the theory. Local fields
show the largest effec30%) at 15 eV. A similar result was found by Stumh al [7]
using a pseudopotential scheme. We conclude that the results of Josefsson and Smith [20],
according to which local fields at high¢g| >~ 27 /a are negligible in the [100] direction,
cannot be generalized for the [111] direction.

4.7. Comparison with IXSS experiments

The dynamic structure factor of silicon along the principal directions has been examined
extensively by Sclilke and co-workers [7, 8] in a series of IXSS experiments. In figures
5-7 these measurements are compared with our results obtained for the same values of
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transferred momentum. In order to correct for possible inaccuracies in the absolute scale of
the experimental curvéswe divided them by the free parameteranging from 1 to 13.
No other free parameters were fittedwas used in figures 5-7 only.

The theoretical structure is quite close to the experimental results, even for higher
transferred momenta and energies. This shows that, apart from the deviations near the band
gap (see section 4.4), the band structure is reproduced correctly by the LDA, and that the
ansatzis large enough for calculating even higher bands. The oscillations appearing in the
theoretical spectra folg| > 2 x 2r/a andhw > 30 ¢V are certainly not realistic. They
do not disappear even when a larg@isatzis used in test calculations. We found similar
oscillations in the case of lithium [54]. Since other numerical inadequacies can almost be
excluded (see section 3), we suspect that small artefacts of the band structure at higher
energies might be the origin.

<
m

eVl

P

g [2n/al

Figure 8. Peaks of the dynamic structure factor measured by various groups together with the
values calculated in this work. [100] direction: dashed line: this work. Squares: reference
[7, 8]. Primed squares and squares with error bars: reference [3]. [110] direction: solid line:
this work. Circles: references [7, 8]. Primed circles: reference [3]. [111] direction: dotted line:
this work. Triangles: references [7, 8]. Triangles with error bars: Reference [1].

In figure 8 the positions of all peaks observed by various groups [7, 8, 3, 1] are
given in anw—g plot together with the dispersion obtained from our theoretical results
after a suitable convolution. Unrealistic oscillations above 30 eV were ignored for this
purpose. Atg = 2.04 x 2x/a in the [100] direction the theoretical curve in figure 5
shows two peaks of nearly the same height. In figure 8 the mean value of the two peak
positions is plotted. The theoretical results coincide with the experimental values within
the experimental accuracy. The latter is given by energy error bars, by-tbsolution

1 Uncertainties infxc may be a reason as well.
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estimated to be up to 10% [7], and by deviations between different groups.

For g below 1x 27 /a there is nearly no anisotropy and the dispersion is approximately
qguadratic. In the [110] direction the dispersion is negative between 1.7.8nd 2z /a, in
agreement with the IXSS experiments [7, 8].

€ .5

Figure 9. —Imeg(q) for ¢ = (0.9 0.3 03) x 2r/a and K = (1 1 1) x 2z/a. Solid
line: —Imegt. Dashed line:—Ime;2. Dotted line: —ImeyL, Dashed-dotted line=Im ez,
Triangles with error bars: values measured by iiah and Kaprolat [9, 11]. The additional
solid peak near 37 eV shows the resolution of 3 eV, which was used for convolution.

4.8. A non-diagonal element of the dielectric matrix

In figure 9 a non-diagonal element of the dielectric matrix is shown together with the
experimental results [9, 11]. The peak near 22 eV coincides well, while at other energies
the deviations are larger than the experimental error. The theoretical result depends only
slightly on the chosen approximation fgc.

5. Conclusion

The dynamic structure factor is reproduced in the TDDFT within the experimental accuracy.
The result depends only slightly on different approximations fgr Polarization of the

2s and 2p core electrons changes the inverse dielectric matrix by up to 8%. In certain
frequency regions ang-directions the change ef ! caused by local field effects amounts

to up to 30%.
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